"위상동형사상"의 두 판 사이의 차이

누리위키, 온 누리의 백과사전
잔글
잔글
16번째 줄: 16번째 줄:
 
* [[열린 집합]]
 
* [[열린 집합]]
  
 +
[[분류:수학]]
 
[[분류:위상수학]]
 
[[분류:위상수학]]

2013년 8월 30일 (금) 19:30 판

다른 뜻에 대해서는 동형사상 문서를 참조하십시오.

위상공간 [math]X,\ Y[/math]에 대하여 어떤 함수 [math]f:X \longrightarrow Y[/math]가 다음 3가지 성질을 만족하면, 위상동형사상(homeomorphism)이라고 한다.

  1. [math]f[/math]연속이다.
  2. [math]f[/math]전단사 함수이다.
  3. [math]f^{-1}[/math]가 연속이다.

이때, [math]X[/math][math]Y[/math]를 서로 위상동형(homeomorphic)이라고 하며, 기호로는 [math]X \cong Y[/math]로 표시한다.

위상적 성질

위상동형사상에 의해서 보존되는 위상공간의 성질을 위상적 성질(topological property)이라고 한다.

같이 보기