약수와 배수

누리위키, 온 누리의 백과사전

다른 뜻에 대해서는 약수(동음이의) 문서를 참조하십시오. 수론에서 [math]a[/math][math]b[/math]약수(divisor)라는 것은 [math]a[/math][math]b[/math]를 나누면 나머지가 0이 된다는 것을 뜻한다. 이때 [math]b[/math][math]a[/math]배수(multiple)라고 한다. 이것을 기호로는 [math]a|b[/math]라고 표시하며, "[math]a[/math][math]b[/math]의 약수이다", "[math]a[/math][math]b[/math]를 나눈다", "[math]b[/math][math]a[/math]의 배수이다", 또는 "[math]b[/math][math]a[/math]로 나누어 떨어진다"라고 읽는다. 약수와 배수는 일반적으로 음수일 수도 있는데, 양의 약수 또는 음의 약수처럼 혼동을 피해서 말하기도 한다. 일반적으로, 사람들은 약수를 생각할 때 양의 약수만을 생각한다.

어떤 0이 아닌 정수 [math]n[/math]의 약수들 중에서 [math]1,\ -1,\ n,\ -n[/math]은 당연히 [math]n[/math]의 약수이므로 자명한 약수라고 하며, 자기 자신인 [math]n[/math]을 제외한 약수들을 진약수라고 한다. 양의 진약수가 1밖에 없는 자연수소수라고 한다.

또한 [math]-n, n[/math]은 당연히 [math]n[/math]의 배수이며, 0에 어떤 수를 곱하든 0이므로, 0은 모든 수의 배수이다.

성질[편집]

  • 0은 모든 정수의 배수이다.[1]
  • 1-1은 모든 정수의 약수이다.
  • [math]a|a[/math].
  • [math]a|b,\ b|c \Rightarrow a|c[/math].
  • [math]a|b,\ a|c \Rightarrow a|(b+c)[/math].
  • 어떤 자연수 [math]n[/math]소인수 분해가 다음과 같다고 하자.
[math]n = p_1^{e_1} p_2^{e_2} \cdots p_k^{e_k}[/math]

그러면, [math]n[/math]의 양의 약수의 개수 [math]d(n)[/math]은 다음과 같다.

[math]d(n) = (e_1 + 1) (e_2 + 1) \cdots (e_k + 1)[/math]

또한, [math]n[/math]의 양의 약수의 합 [math]\sigma(n)[/math]은 다음과 같다.

[math]\sigma(n) = \prod_{i=1}^{k} \frac{p_{i}^{e_i + 1}-1}{p_{i}-1}[/math]

같이 보기[편집]

주석[편집]

  1. ^ 임의의 정수가 0의 약수라는 것과 동치이다.